

IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION **IEC Certification System for Explosive Atmospheres**

for rules and details of the IECEx Scheme visit www.iecex.com

Certificate No.3

IECEX PTB 09.0009X

Page 1 of 4

Certificate history:

Status:

Current

Issue No: 5

Issue 4 (2015-07-06) Issue 3 (2013-01-17)

Date of Issue:

Issue 2 (2012-09-11) Issue 1 (2011-11-01)

2020-01-10

Issue 0 (2009-01-28)

Applicant:

BARTEC-Varnost d.o.o. Cesta 9 avgusta 59

1410 Zagorje ob Savi

Slovenia

Equipment:

Junction Box types 07-5103-****/**** , 07-5105-****/****, 07-5106-****/*** and 07-5107-***/***

Optional accessory:

Type of Protection:

Increased Safety "eb", Intrinsic Safety "la/lb", Protection by Enclosure "tb"

Marking:

Ex eb la/lb IIA, IIB, IIC T6, T5 Gb Ex la/lb IIA, IIB, IIC T6, T5 Gb Ex tb III C T80 °C, T95 °C Db Ex la/lb III C T80 °C, T95 °C Db

Approved for issue on behalf of the IECEx Certification Body:

Dr.-Ing. Detlev Markus

Position:

Signature: (for printed version)

Date:

Head of Department Explosion Protection in Energy Technology

1. This certificate and schedule may only be reproduced in full.

2. This certificate is not transferable and remains the property of the issuing body.

3. The Status and authenticity of this certificate may be verified by visiting www.lecex.com or use of this QR Code.

Certificate Issued by:

Physikalisch-Technische Bundesanstalt (PTB) **Bundesallee 100** 38116 Braunschweig Germany

IECEx Certificate of Conformity

Certificate No.:

IECEX PTB 09.0009X

Page 2 of 4

Date of issue:

2020-01-10

Issue No: 5

Manufacturer:

BARTEC-Varnost d.o.o. Cesta 9. avgusta 59 1410 Zagorje ob Savi

Slovenia

Additional manufacturing locations:

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEX Scheme Rules, IECEX 02 and Operational Documents as amended

STANDARDS:

The equipment and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards

IEC 60079-0:2017

Explosive atmospheres - Part 0: Equipment - General requirements

IEC 60079-11:2011

Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

Edition:6.0

Edition: 7.0

IEC 60079-31:2013 Explosive atmospheres - Part 31: Equipment dust ignition protection by enclosure "t"

Edition:2

IEC 60079-7:2017

Edition:5.1

Explosive atmospheres - Part 7: Equipment protection by increased safety "e"

This Certificate does not indicate compliance with safety and performance regulrements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS:

A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in:

Test Report:

DE/PTB/ExTR09.0009/04

Quality Assessment Report:

SI/SIQ/QAR11.0003/05

IECEx Certificate of Conformity

Certificate No.:

IECEX PTB 09.0009X

Page 3 of 4

Date of issue:

2020-01-10

Issue No: 5

EQUIPMENT:

Equipment and systems covered by this Certificate are as follows:

Description of equipment

The junction box, type 07-5103-**** / * ***, 07-5105-**** / * ***, 07-5106-**** / * *** and 07-5107-**** / * *** is a polyester enclosure which is designed to type of protection increased Safety "e".

The junction box type 07-5103-**** / * *** and 07-5105-**** / * *** is also designed to type of protection Protection by enclosure "tb". The junction box of type 07-5103-**** / * *** and type 07-5106-**** / * *** is equipped with terminals of type of protection increased Safety "eb" and, optionally, terminals for intrinsically safe circuits. The latter are separated from the terminals of type of protection increased Safety "e" and are marked, e.g., by a light-blue colour, for clear identification.

Safety "e" and are marked, e.g. by a light-blue colour, for clear identification.

The junction box of type 07-5105-*** / * *** and type 07-5107-**** / * *** houses terminals for intrinsically safe circuits only.

Connection is by means of Ex-type cable entries. The empty enclosure and all components have been tested and certified under a separate examination certificate.

Technical data, nomenclature and notes for manufacturing and operation see Annex.

SPECIFIC CONDITIONS OF USE: YES as shown below:

Conditions for safe use

For enclosures and parts of enclosures with a surface resistance >10^9 Ohm exist potential electrostatic charging hazard. These enclosures has to be equipped with following marking:

"Warning - potential electrostatic charging hazard. Only wet cleaning. See instructions"

IECEx Certificate of Conformity

Certificate No.:

IECEX PTB 09.0009X

Page 4 of 4

Date of issue:

2020-01-10

Issue No: 5

DETAILS OF CERTIFICATE CHANGES (for issues 1 and above)

New test according to the standards IEC 60079-0:2017 (Ed. 7), IEC 60079-7:2015+A1:2017 (Ed. 5.1), IEC 60079-11:2011 (Ed. 6), IEC 60079-31:2013 (Ed. 2).

Annex:

COCA 09.0009X Issue 5.pdf

Applicant:

BARTEC Varnost d.o.o.

Cesta 9 avgusta 59 1410 Zagorje ob Savi

Slovenia

Electrical Apparatus:

Junction box types 07-5103-****/****, 07-5105-****/****.

07-5106-***/*** and 07-5107-***/****

Description of equipment

The junction box, type 07-5103-****/****, 07-5105-*****, 07-5106-****/**** and 07-5107-****/**** of a polyester enclosure which is designed to type of protection Increased Safety "eb".

The junction box type 07-5103-****/**** and 07-5105-****/**** is also designed to type of protection Protection by enclosure "tb".

The boxes are provided with cable entries and inspection windows.

The junction box of type 07-5103-****/**** and type 07-5106-***/**** is equipped with terminals of type of protection Increased Safety "e" and, optionally, terminals for circuits in the type of protection Intrinsic Safety "ia/ib". The latter are separated from the terminals in the type of protection Increased Safety "e" and are marked, e.g. by a light-blue colour, for clear identification.

The junction box of type 07-5105-****/**** and type 07-5107-****/**** houses terminals for circuits in the type of protection Intrinsic Safety "ia/ib" only.

Connection is by means of Ex-type cable entries.

The empty enclosure and all components have been tested and certified under a separate examination certificate.

Technical data

Sizes	Length	Width	Height
smallest	80 mm	75 mm	55 mm
largest	600 mm	405 mm	165 mm

Rated voltage*	up to 1100 V
Rated current*	max. 500 A
Rated cross section*	max. 300 mm ²

*) depending on the type of terminal used

Ambient temperature,

depending on temperature class, gasket and inspection window

-20 °C to +40 °C: T6, EPDM gasket and inspection window

-55 °C to +40 °C: T6, T80 °C, silicone gasket -20 °C to +55 °C: T5, T95 °C, EPDM gasket

-55 °C to +55 °C: T5, T95 °C, silicone gasket and

Ex ia/ib IIC T6 Gb version with silicone gasket

Rated voltage	up to	230 V
Rated current	max.	1 A
Rated cross section	max.	0,75 mm ²

Ambient temperature,

depending on gasket and inspection window

-20 °C to +70 °C: T6, EPDM gasket and inspection window(s)

-55 °C to +70 °C: T6, T80 °C, silicon gasket and

Ex ia/ib IIC T6 Gb version with silicone gasket

Degree of Protection acc. to IEC 60529 IP66 with EPDM gasket and silicone gasket

Surface resistance

Housing type 07-5103-****/****: < 10^9 Ohm Housing type 07-5105-****/****: < 10^9 Ohm Housing type 07-5106-****/****: > 10^12 Ohm Housing type 07-5107-****/****: > 10^12 Ohm

Inspection window: > 10^14 Ohm

General remarks

The ratings specified are maximum values, actual values will be subject to the explosion-proof equipment used from case to case. Depending on the system conditions, the manufacturer will define the definitive ratings which will be within the range of these limiting values and will comply with the relevant standards.

The composition of the protection symbol will be based on the types of protection of components actually used.

Nomenclature

07-	5	1	**_	***	*/**	**
1	2	3	4	5	6	7

- 1) Type number
- 2) Number for installation material
- 3) Number for junction box
- 4) Number for intended purpose
 - 03: Increased Safety, Polyester enclosure type 07-5185-***/****
 - 05: Intrinsic Safety, Polyester enclosure type 07-5185-****/****
 - 06: Increased Safety, Polyester enclosure type 07-5184-****/****
 - 07: Intrinsic Safety, Polyester enclosure type 07-5184-****/****
- 5) Number for length
 - min. 080 = 80 mm, max: 600 = 600 mm
- 6) Number for width
 - min. 075 = 75 mm, max. 405 = 405 mm
- 7) Number for height
 - min. 55 = 55 mm, max. 16 = 160 mm

Marking

Ex eb ia/ib IIA, IIB, IIC T6, T5 Gb	(Type 07-5103-***/*** and 07-5106-***/***)
Ex ia/ib IIA, IIB, IIC T6, T5 Gb	(Type 07-5105-***/*** and 07-5107-***/***)
Ex tb IIIC T80 °C, T95 °C Db	(Type 07-5103-***/*** and 07-5105-***/***)
Ex ia/ib IIIC T80 °C, T95 °C Db	(Type 07-5105-***/***)

Notes for manufacturing and operation

The maximum number of conductors for the housing size in dependence on the section and the permissible continuous current rating are to be taken from the specifications.

Terminals for intrinsically safe circuits have to be installed in such a way that the clearance and creepage distances between intrinsically safe and non-intrinsically safe circuits and/or different intrinsically safe circuits and a circuit and earth as set forth in EN 60079-11 are met.

When more than one intrinsically safe circuit is used, the rules for interconnection are to be observed.

The admissible temperature range of the installed elements must not be exceeded.

Specific Conditions of Use

For enclosures and parts of enclosures with a surface resistance >10^9 Ohm exist potential electrostatic charging hazard. These enclosures have to be equipped with following marking: "Warning – potential electrostatic charging hazard. Only wet cleaning. See instructions".

At a temperature of more than +60 °C heat resistant cables have to be used.

Supplemental sheet No 1 1

regarding compliance certification:

IECEx PTB ...

Equipping of the branch and relay boxes type 07-5101-0580/6438

Housing size in mm

L. W = 68.

H. D = 36

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

W. H = 84:

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CFO1	s secti	on in m	m²						
/A	1.6	2.5	4	6	10	25	35	50	70	95	120	160	185	240	300	
6																
10	18												In thi	e area	under	
16	6	12	48								comp	lance :	with the	instru	ctions	
20	2	7	14									and the	define	d insta	lation	
25		3	8	15							dimen	sions i	n the h	pusing	there	
35			2	6	15						ca	n be an	option	al num	ber of	
50					4	12							•	ele	ments	
63						5	20									
80	,					2	6	22								
100							2	6								
125								2	6							
160									2	5						
200	The a	ssembl	y in this	9618							4	14				
225	requin	96 2 90	parele	instruct	ion						2	5				
250	on hea	ating										3	7			
315													2	.6		
400														*."	4	
500																
	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		number num nor							ned ho	u sing I	sizes an	d the c	7068 86	ection a	ind	

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assembles with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
G G	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 2 regarding compliance certification:

Housing size in mm

IECEX PTB ...

Equipping of the branch and relay boxes type

L. W = 98

07-5101-0980/6436

W. H = 64:

H, D = 38

Maximum count of conductors, depending on the cross section and the allowed continuous current for the allowed continuous current for the allower mentioned housing size.

Each established router and each internal connection conductor counts as a conductor; bridges and protection conductors are not counted.

Current							Cros	s section	on in m	m²						
//	1,5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	20												In th	s area	under	
16	7	13	63								comp	kance	with the	instru	ctions	
20	3	8	15									and the	define	d instal	lation	
25		3	8	17							dimer	slons i	n the h	ousing.	there	
35			2	6	16						ca	n be an	option	al num	ber of	
50					5	13								clei	ments	
63						6	22									
80						2	6	25								
100							2	6								
125								2	6							
160									2	5						
200	The a	ssembl	y in this	area						2	5	15				
225		es à sc			ion						3	6				
250	on he											3	7			
315													2	4		
400															3	1
500																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		number num nor								using	sizes ar	nd the c	7086 S	ection a	ind	

Instructions

The maximum charge currents of the clemps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees. Celsius. In case of a usage of values in the table, the structureous or charge factors comprising IEC 439 must be kept in mind. Mixing of assembles with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm ³	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63 ×	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 3 regarding compliance certification

IECEX PTB

Equipping of the branch and relay boxes type L, W = 150.

07-5101-1500/6436

Housing size in mm

W, H = 64.

H. D = 36

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted

Current							CfO	is secti	on le m	m²						
/A	1.5	2.5	4	8	10	25	35	60	70	95	120	150	185	240	300	
- 6																
10	21												In thi	Sens a	under	
16	7	14	65								comp	diance :	with the	inatru	ctions	
20	3	8	16								- 6	and the	define	d instal	lation	
25		3	9	17							dimen	aions i	n the h	ousing.	there	
35			2	6	17			/			CIN	n be an	option	al num	ber of	
50					5	14								eler	ments	
63						6	23									
80						2	7	26								
100							3	6								
125								2	6							
160									2	6						
200	The a	saemb	y in this	8018						2	5	16				
225	requir	08 A 80	parate i	instruct	ion						3	6				
260	on her	ating										3	8			
315		•											2	4		
400															3	
500																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		number							ned ho	using (MIZES SI	d the d	7058 S4	ection a	ind	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the Interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Moding of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.6	16	10 (of 30)	33 %
	16	50	12 (of 48)	 25 %
	25	63	38 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 4 regarding compliance certification:

IECEX PTB ...

Equipping of the branch and relay boxes type

07-6101-0750/8057

Housing size in mm

L. W = 75 W, H = 80; H, D = 57

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	s section	m ni no	m²						
/A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	27												In thi	-	under	
16	9	18	70								comp	lience '	with the	e instru	ctions	
20	3	10	20									and the				
25		5	11	22								sions i				
35			3	6	21						CB	n be an	option	al num	ber of	
50					7	17								ale	ments	
63					2	8	29									
80						3	9	33								
100							4	8								
125								3	8	7						
160									3	2	8	20				
200	The a	ssembl	y in thic	BOTS 2							3	8				
225	requir	es & se	parate	instruct	ion						2	5	10			
250	on he	ating											3	6		
315															4	1
400																
500																
	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	
		number							ned ho	using (sizes ar	nd the d	arose se	ection a	ind	

Instructions:

When choosing the unassigned continuous currents for the cross sections, the maximum charge currents of the clamps used and the connected cables and conductors are to be observed. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Calaius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionalety adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 5 regarding compliance certification:

IECE PTB

Equipping of the branch and relay boxes type L, W = 125;

07-5101-1750/8057

Housing size in mm

W. H = 80. H, D = 57

Maximum count of conductors, depending on the cross section and the allowed continuous current for the eforementioned housing size

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted

Current							Cros	s secti	on in m	m ⁷						
/A	1.5	2	4	6	10	25	35	50	70	95	120	150	185	240	300	
		5														
6																
10	29												In thi	s area	under	
16	10	1	76								comp	fiance:	with the	Instru	ctions	
		9									1	and the	define	d insta	ration	
20	4	1	22								dimer	sions i	n the h	ousing.	There	
		1									CB	n be an	option	el num	ber of	
25		5	12	24										eler	nents	
35			3	9	23											
50					7	19										
63					2	9	31									
80						3	10	35								
100							4	9								
125								3	9	8						
160									3	3	7	22				
200	The a	ssemb	ly in this	area							4	8	10			
225	requir	10 A 20	parate i	instruct	ion						2	5	11			
250	on he	ating											3	6		
315															4	- 1
400																
500																
	24	24	12	0	0	0	0	0	0	0	0	0	0	D	0	
	max.	numbe	of clan	тре бер	ending	on the	above	mentio	ned ho	ueing (itzes an	d the c	7088 86	ection a	ind	
			minal c													

Instructions.

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Cetalus. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assembles with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 6 regarding compliance certification:

IECEX PTB

Equipping of the branch and relay boxes type

07-6101-1750/8057 W, H = 80:

H, D = 57

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CIDE	sectio	n in ma	n²						
/A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
8																
10	29												In thi	s area	under	
16	10	19	77								comp	dance	with the	instru	ctions	
20	4	11	22									and the	define	d insta	liation	
25		5	12	24							dimer	relons i	n the h	ousing,	there	
35			3	9	23						ca	n be er	option	al num	ber of	
50					7	19								ele	ments	
63					2	9	32									
80						3	10	36								
100							4	9								
125								3	9	8						
160									3	3	7	22				
200	The a	ecombly	in this a	pet sen	uires						4	9				
225	a sep	arate ins	truction	on heal	ing						2	5	11			
250					_								3	6		
315															4	1
400																
500																
	36	36	24	0	8	0	0	0	0	0	0	0	0	0	0	
		number (euod be	ing siz	tes and	the ara	ss sed	ion and	d	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 7

to compliance pertification

IECEX PTB

Equipping of the branch and relay boxes type

07-5101-2500/8057

Housing size in mm

L. W = 260,

W, H = 80;

H, D = 57

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	ss secti	on in m	m²						
JA	1.5	2.5	4	6	10	25	35	60	70	95	120	150	185	240	300	
6																
10	29												In thi	s area	under	
16	10	19	77								Сопър	liance '	with the	instru	anoito	
20	4	11	22								1	and the	define	d instal	lation	
25		5	12	24							dimen	istons i	n the h	gnisuo	there	
35			3	9	23						CBI	n be an	option	al num	ber of	
50					7	19								eler	nents	
63					2	9	32									
80						3	10	36								
100							4	9								
125								3	9	8						
160									3	3	7	22				
200	The a	ssembl	y in this	Bens							4	8				
225	requir	OS 3 50	parate	instruct	ion						2	5	11			
250	on he	ating											3	6		
315		_													4	
400																
500																
	48	48	36	0	8	0	0	0	0	. 0	0	0	0	0	0	
			of clan						ned ho	using s	NZES AF	id the d	7055 86	ection a	ind	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No. 8

to compliance certification:

IECEK PTB ...

Equipping of the branch and relay boxes type

07-6101-1221/2080

Housing size in mm

L. W = 122,

W, H = 120;

H. D = 80

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CLOS	s secti	on in m	m ²						
/A	1,5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	40												In thi	s area	under	
16	13	26	103								comp	diance:	with the	instru	otions	
20	5	15	30								3	and the	define	d instal	llation.	
25		7	17	32							dimer	reions i	n the h	ousing,	there	
35			6	12	31						CB	n be an	option	el numi	ber of	
50					10	26							-	eler	ments	
63					3	12	43									
80						4	13	48								
100							6	12								
125							_	5	13							
160								_	4	11						
200	The a	ssemb	ly in this	arna						4	9	30				
225			parate		ion						5	12				
250	on he										3	7	15	9		
315												•	4	2	6	1
400													•	_	•	Ţ,
500																
	18	18	19	14	0	0	0	0	0	0	0	0	0	0	0	
	max.		r of clan							using :	sizes ad	nd the d	7088 84	ection a	ind	

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celalus. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be tept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No :9

to compliance certification: IECE

IECEX PTB

Equipping of the branch and relay boxes type

07-6101-1221/2090

Housing size in mm

L W = 122

H, D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

W, H = 120;

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	s secti	on in m	m²						
_/A	1.5	25	4	- 6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	43												In thi	s area i	under	
16	14	28	110								comp	liance	with the	instru	shone	
20	6	16	32								1	and the	define	d instal	lation	
25		7	18	35							dimen	sions l	n the ho	ousing.	there	
35			5	13	34									al numi		
50				2	11	28									nents	
63					3	13	46									
80						5	14	52								
100						•	6	13								
125								5	13							
160								•	4	12						
200	The a	saambi	ly in this	Aces					-	4	10	32				
225			perate		don					7	6	12				
250	on he										3	7	16	9		
315	047 1104	ara i g									3	•	4	2	6	1
400													7		U	
500																
	18	18	19	14	0	0	0	0	0	_	0	0	0	0	D	
			of clarr		_	_	_	_	ned ha	using :	_	id the c	_	-	_	
	maxim	num no	mina) c	1088 880	ction of	the ine	talled o	lamps.		_						

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be trapt in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately edjusted table values.

Example	Cross section/mm ²	Current/A	Number	Worldoad
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	00 % > 100 %

Supplemental sheet No.:10

to compliance certification:

IECE: PTB ...

Equipping of the branch and relay boxes type

07-6101-2201/2080

Housing size in mm

L. W = 220;

H. D = 80

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

W, H = 120;

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	e secti	on in m	m²						
/A	1.5	25	4	6	10	25	35	60	70	95	120	150	185	240	300	
6					6											
10	43												In thi	area (under	
16	14	28	111								comp	fiance (with the	instru	anoita	
20	6	16	32								-	and the	define	d instal	lation	
25		8	18	35							dimen	sions i	n the he	pusing.	there	
35			5	13	34						CEL	s be an	option	al numi	ber of	
50				2	11	28							·	eler	nents	
63					3	13	46									
80						5	14	52								
100							8	13								
125								5	14							
160									4	12						
200	The a	esembl	ly in this	area						4	10	32				
225			parate		ion						8	12				
260	on he										3	7	16	9		
315											_		4	2	6	1
400																
500																
	72	72	36	26	13	10	9	7	0	0	0	0	0	0	0	

max, number of clamps depending on the above mentioned housing sizes and the cross section and maximum nominal cross section of the installed clamps.

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celeius.

In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm ²	Current/A	Number	Workload
(general)	2.6	16	10 (of 30)	33 %
	16	50	12 (of 48)	26 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 11

to compliance certification:

IECEX PTB

Equipping of the branch and relay boxes type

07-5101-2201/2090

Housing size in mm

L, W = 220;

W, H = 120;

H, D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

Each established router and each internal connection conductor counts as a

Current							CtO	s secti	on in m	m,						
- /A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	45												In thi	s area	under	
16	15	30	118								comp	dianca	with the	Inetru	ctions	
20	6	17	34									and the	define	d instal	ation	
25		8	19	37							dimen	anoie i	n the h	pusing,	there	
35			5	14	36						Câ	n be ar	option	al num	ber of	
60				2	11	30								eler	nents	
63					4	14	49									
80						5	15	55								
100							6	14								
125								5	14							
160									5	13						
200	The a	semb	ly in this	area						4	11	35				
225	requir	DS 8 81	parate	Instruct	tion						6	13				
250	on he	eting									3	8	17	10		
315													6	2	7	2
400																
500																
	72	72	36	26	13	10	9	7	D	0	0	0	0	0	0	
			r of clan		_				ned ho	using I	sizes ar	d the c	7055 S6	oction a	nd	

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Cetalus. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	18	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	38 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 12

to compliance certification:

IECEN PTB

Equipping of the branch and relay boxes type

07-5101-3801/2080

Housing size in mm

L.W = 380:

H D = 80W. H = 120:

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cr05	s secti	on in m	m²						
IA	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	43												In thi	area e	under	
16	14	28	112								comp	Bance I	with the	instru	ctions	
20	6	16	32								- 1	and the	define	d instal	lation	
25		8	18	35							dimen	sions i	n the ho	gnieuc	there	
35			5	13	34						CBJ	n be an	option	al numi	ber of	
60				2	-11	28								eler	ments	
63					3	13	47									
80						5	14	62								
100							6	13								
125								5	14							
160									4	12						
200	The a	ssembl	ly in this	8016						4	10	33				
225	requir	98 A SE	parate i	instruct	ion						6	13				
250	on he		•								3	7	16	9		
315													4	2	6	19
400																3
500																
	126	126	72	43	26	20	18	7	0	0	0	0	0	0	0	C

max, number of clamps depending on the above mentioned housing sizes and the cross section and maximum nominal cross section of the installed clamps

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mining of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	26	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 13

to compliance certification.

IECEX PTB

Equipping of the branch and relay boxes type

ype 07-6101-1601/5090

Housing size in mm

L, W = 160,

W, H = 160.

H, D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							0/06	s secti	on in m	m²						
IA	1.5	2.5	4	8	10	25	35	60	70	95	120	150	185	240	300	
6																
10	48												In thi	s area	under	
16	16	32	125								comp	liance I	with the	Instru	ctions	
20	6	18	36									and the	define	d insta	liation	
25		9	20	39							dimen	sions i	n the h	ousing,	there	
35			6	15	38						CB	n be an	option	al num	ber of	
50				2	12	31								ele	ments	
63					4	14	52									
80						5	16	58								
100							7	15								
125							•	6	15							
160									5	13						
200	The a	ssembl	ly in this	area					-	5	12	37				
225			perate		lion						6	14				
250	on he		P								3	8	18	- 11		
315	311110										_	_	5	2	7	- 2
400																
500																
	50	50	25	18	18	14	0	0	0	0	0	0	Ω	0	0	
			r of clan				_		_	_		_	_	_	_	

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Cotsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example	Cross section/mm²	Current/A	Number	Workland
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 14

to compliance certification.

IECEX PTB

Equipping of the branch and relay boxes type

y boxes type 07-6101-2601/6090

Housing size in mm

L, W = 260.

H, D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

W, H = 160;

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	s secti	on in m	m²						
IA	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	52												In thi	s arce	under	
16	18	34	135								comp	liance t	with the	instru	ctions	
20	7	20	39									and the	define	d instal	tation	
25		9	22	42							dimen	islons i	n the h	prieuc	there	
35			6	16	41						car	n be an	option	al numi	ber of	
50				2	13	34							-	eler	ments	
63				-	4	16	56									
80						6	17	63								
100						-	7	16								
125								6	17							
160									5	15						
200	The a	ssemb	ly in this	area						5	13	40				
225			parate		llon					2	7	15				
250	on he									_	4	9	20	12		
315		9										2	5	2	8	2
400												_		_	_	
500																
000	100	100	75	36	36	24	12	a	0	0	0	0	0	D	0	
	man.	numbe	r of clan	nps de	pending	on the	above	mentlo	-	_	_		_	_	_	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately edjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	96 % < 100 %

Supplemental sheet No., 15

to compliance certification.

IECEx PTB ...

Equipping of the branch and relay boxes type

07-5101-3601/6090

Housing size in mm

L. W = 360;

W, H = 160; H, D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

53 18	35 20	138	6	10	25	35	60	70	95	120	150	185	240	300	
18	_	138						7.7							
18	_	138													
	_	138										In thi	a area i	ınder	
7	20									comp	llance v	with the	instruc	tions	
	#V	40								- 1	and the	define	d instal	lation	
	9	22	43							dimen	sions i	n the ho	gniauc	there	
		6	17	42						car	i be an	aption	al numi	per of	
			2	13	35							•	elen	nents	
				4	16	58									
					6	18	64								
						7	17								
							6	17							
								6	15						
he asse	ambi	v in this	8199							13	40				
				ion					2	7					
									_	4	9	20	12		
											2		_	6	2
75 1	75	100	54	42	34	24	9	6	6	0	0	0	0	0	-
	quires heati	quires a se n heating	he assembly in this quires a separate in heating	the assembly in this area quires a separate instruct in heating	the assembly in this area quires a separate instruction in heating	2 13 35 4 16 6 6 he assembly in this area quires a separate instruction in heating	2 13 35 4 16 58 6 18 7 he assembly in this area quires a separate instruction in heating	2 13 35 4 16 58 6 18 64 7 17 6 he assembly in this area quires a separate instruction in heating	2 13 35 4 16 58 6 18 64 7 17 8 17 6 he assembly in this area quires a separate instruction in heating	2 13 35 4 16 58 6 18 64 7 17 8 17 6 15 he assembly in this area quires a separate instruction 2	2 13 35 4 16 58 6 18 64 7 17 6 17 6 18 6 18 64 7 17 6 17 6 18 6 18 6 18 6 18 6 19 6 10 7 17 7 17 8 16 8 16 1 10 1 10	2 13 35 4 16 58 64 7 17 6 17 6 18 64 7 17 6 18 64 7 17 6 18 64 7 17 6 18 64 7 17 6 18 64 7 17 6 18 64 7 18 6 18 64 7 18 6 18 64 7 18 6 18 6 18 6 18 6 18 6 18 6 18 6 18	2 13 35 4 16 58 64 7 17 8 15 17 6 17 6 17 6 17 6 18 64 9 16 6 18 64 9 20 9 5 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17	2 13 35 4 16 58 6 18 64 7 17 6 17 6 16 he assembly in this area (pulses a separate instruction) 2 7 16 1 heating 4 9 20 12 2 5 2	2 13 35 4 16 58 6 18 64 7 17 8 17 6 16 he assembly in this area quires a separate instruction 1 heating 4 9 20 12 2 5 2 6

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Cetaius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be tept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 16

to compliance certification.

IECEX PTB

Equipping of the branch and relay boxes type Housing size in mm

L, W = 560;

07-5101-5601/6090

W, H = 160;

H. D = 90

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CIOI	s secti	on in m	m						
/A	1.5	2.6	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	53												In thi	s area	under	
16	18	35	138								comp	liance v	with the	Instru	ctions	
20	7	20	40									and the	define	d instal	lation	
25		9	22	43							dimen	sions i	n the ho	ousing.	there	
35			6	17	42							n be an				
50			_	2	13	35									ments	
63				_	4	16	58							0.0.		
80					-	6	18	64								
100							7	17								
125							- 1	6	17							
160								0	6	44						
	_									15						
200	The a	ssemb	ly in this	2100						5	13	40				
225	requir	95 A 66	parate:	Instruct	ion					2	7	16				
250	on he	ating									4	9	20	12		
315												2	5	2	8	- 2
400																
500																
	275	275	175	90	72	53	36	18	12	6	0	0	0	0	0	
	mex	numbe	of clan	IDS dec	ending		above	mentio	ned ho	uelng :	stzee er	d the c	1059 86	ction s	ind	
			minal c		-											

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circults of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No : 17

to compliance certification.

IECEX PTB ...

Equipping of the branch and relay boxes type

07-5101-2002/3011

Housing size in mm

L. W = 200:

W. H = 230:

H. D = 110

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CTO	s secti	on in m	m²						
IA	1.5	2.5	4	6	10	25	35	50	70	95	120	160	185	240	300	
6																
10	61												In thi	area i	under	
16	21	41	159								comp	bance '	with the	instru	ctions	
20	8	24	46								1	and the	define	d instal	lation	
26		11	26	60							dimer	naions i	n the h	oualno.	there	
35			7	19	49								option	-		
50				2	16	40									nents	
63				-	5	18	67							0.0.		
80					•	7	21	75								
100						•	9	19								
125							3	6	20							
										17						
160									6			4=				
200			ly in this							6	15	47				
225			parate	instruct	ion					2	0	18				
250	on he	ating									4	11	23	14		
315												2	6	3	9	2
400							0.0									
500																
	124	124	72	46	26	21	18	12	0	0	0	0	0	0	0	
			r of clan						ned ho	using s	alzes ar	nd the d	7058 96	ction a	nd	

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the inferior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celalus. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values

Example.	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	60	12 (of 4B)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 18

to compliance certification.

IECEx PTB ...

Equipping of the branch and relay boxes type L, W = 200;

07-5101-2002/3018

W, H = 230;

H, D = 180

Meximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cros	s secti	on in m	m ²						
/A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	81												In thi	s area i	ınder	
16	28	54	210								comp	liance v	with the	instruc	tions	
20	- 11	31	61									and the	define	d instal	ation	
25		16	34	66							dimen	sions l	n the h	pusing.	there	
35			10	26	65						CBI	n be en	noitgo	al numi	per of	
50				3	21	63								elen	nents	
63					7	25	88									
80						9	27	99								
100							12	26								
125								10	26							
160									9	23						
200	The a	seemb	ly in this	area						8	20	62				
225			parate		lion					3	11	24				
250	on he										6	15	31	18		
315		_										3	9	4	12	
400																
500																
-	124	124	72	46	26	21	18	12	0	0	0	0	0	0	0	
	max.	numbe	r of clan	npe de	pendin	on the	above	mentic	ned ho	using :	sizes er	id the c	7055 S4	ection a	nd	
			minal c													

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Calaius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assembles with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (af 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 19

to compliance certification:

IECEX PTB

Equipping of the branch and relay boxes type Housing size in mm

07-5101-2802/3011

W. H = 230:

L, W = 280.

H. D = 110

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							CIO:	s secti	on in m	m²						
/A	1.5	2.5	4	- 6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	67												In thi	s area t	under	
16	23	44	173								comp	liance 1	with the	instruc	anoite	
20	9	26	50									and the	define	d install	lation	
25		12	28	54							dimen	isions i	n the hi	pueing.	there	
35			8	21	53						CBI	ne ed r	option	al numt	per of	
50				3	17	44								elen	nents	
63					5	20	72									
80						7	22	81								
100							9	21								
125								8	21							
160									7	19						
200	The a	ssemb	ly in this	BOIS C						6	16	51				
225	requir	96 à 86	parate	instruci	not					2	9	20				
250	on he	ating									5	12	25	15		
315		_										2	7	3	10	3
400																
500																
	180	180	108	66	52	26	22	17	0	0	0	0	D	0	0	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Cetalus. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
-	16	60	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 20 regarding compliance certification:

IECEX PTB

Equipping of the branch and relay boxes type Housing size in mm

L, W = 330,

07-6101-3302/3011

W, H = 230;

H. D = 110

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted

Current							Cros	s secti	on in m	m ²						
/A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	186	240	300	
6																
10	69												In thi	s area	under	
16	23	45	178								comp	dance '	with the	instru	ctions	
20	9	26	51									and the	define	d instal	lation	
26		12	29	58							dimen	isions i	n the h	pusing.	there	
35			8	22	54						CBI	n be er	option	al num	ber of	
50			-	3	21	45							•		nents	
63					6	21	74									
80					_	8	23	83								
100		- 1				_	10	22								
125								9	22							
160								•	7	19						
200	The	eeemb	ly in this						•	7	17	52				
225			-		lina					,	9	20				
			eparate	nonuc	UGH						5	12	26	15		
250	on he	eting									9					
315												2	7	3	10	3
400																-
500																
	216	216	144	61	52	42	26	21	10	0	0	0	0	0	0	(
	mex. I	numbe	r of clan	nps der	pending	on the	above	mentic	med ho	using :	91200 A1	nd the d	cross s	action a	ind	
			minal c							_						

Instructions:

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind Mixing of assembles with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	18	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %

Supplemental sheet No.: 21

to compliance certification:

IECEX PTB ...

Equipping of the branch and relay boxes type

07-5101-3302/3018

Housing size in mm L, W = 330;

W, H = 230;

H D = 180

Maximum count of conductors, depending on the cross section and the allowed continuous current for the aforementioned housing size.

Each established router and each internal connection conductor counts as a conductor, bridges and protection conductors are not counted.

Current							Cro	ss secti	on in m	m²		3.				
/A	1.5	2.5	4	6	10	25	35	50	70	95	120	150	185	240	300	
6																
10	88												In thi	s area	under	
16	30	59	228								comp	liance :	with the	instru	ctions	
20	12	34	66								- 1	and the	define	d instal	lation	
25		16	37	72							dimer	naiona i	n the h	outling.	there	
36		,,,	11	28	70									al numi		
			11	_		40					-				nents	
50				4	23	58	1							9001	110110	
63					7	27	96									
80						10	30	107								
100							13	28								
125								11	28							
160									10	25						
200	The a	ssemb	ly in this	area						9	22	67				
225	requir	96 a 60	parate	inetruci	tion					3	12	26				
250	on he	eting	•								6	16	33			
315		_										3	9	20		
400														4	14	4
500														•	2	
A	216	216	144	81	52	42	26	21	10	0	0	D	0	0	0	
			r of clan				-			_	-	_		_	-	

Instructions

The maximum charge currents of the clamps used and the connected cables and conductors are to be observed when choosing the unassigned continuous currents for the cross sections. Conductors, in the interior of the housings equipped as in the table above, must be qualified for a temperature of between 70 to 80 degrees Celsius. In case of a usage of values in the table, the simultaneous or charge factors comprising IEC 439 must be kept in mind. Mixing of assemblies with circuits of varying cross sections and currents is possible with a use of the proportionately adjusted table values.

Example:	Cross section/mm²	Current/A	Number	Workload
(general)	2.5	16	10 (of 30)	33 %
	16	50	12 (of 48)	25 %
	25	63	36 (of 90)	40 %
			Total	98 % < 100 %